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Abstract

•virel is a novel, theoretically grounded probabilistic inference framework for rein-
forcement learning (RL) that utilises the action-value function in a parametrised form
to capture future dynamics of the underlying Markov decision process

•Applying the variational expectation-maximisation algorithm to our framework, we
show that the actor-critic algorithm can be reduced to expectation-maximization

•virel is a more flexible and mathematically grounded alternative to existing RL-as-
inference frameworks such as the maximum entropy or pseudo-likelihood approaches

Reinforcement Learning as Inference

•The RL problem is to find an optimal policy π∗(a|s) ∈ Π∗ , arg maxπ J
π, where

Jπ ,
∫
Qπ(h)p0(s)π(a|s)dh

•RL as inference approaches recast the RL problem as an inference problem in which
maximizing a marginal likelihood is equivalent to maximizing the reward function Jπ

•Existing RL-as-inference frameworks:

–Maximum Entropy RL: no closed-form updates for the parameters of value functions
without using approximations

–Pseudo-Likelihood RL: promotes risk-seeking policies

Variational Expectation-Maximization

• In variational inference, we seek to maximize the marginal likelihood, p(x)

• For any valid probability distribution q(h) over h we can rewrite the log-marginal
likelihood objective as a difference of two KL divergences,

L(x;ω) =

∫
q(h) log

(
p(x, h;ω)

q(h)

)
dh−

∫
q(h) log

(
p(h|x;ω)

q(h)

)
dh,

=ELBO (q(h);ω) + KL(q(h) ‖ p(h|x;ω)),

where ELBO (q(h)) ,
∫
q(h) log

(
p(x,h)
q(h)

)
dh is known as the evidence lower bound

•Variational expectation-maximization:

Variational E-Step: θn+1 ← arg max
θ

ELBO (q(h; θ);ωn)

Variational M-Step: ωn+1 ← arg max
ω

ELBO (q(h; θn+1);ω)

VIREL Framework

•Optimality of reward:

p(O|h;ω) = exp

(
Qpω(h)

β(ω)

)O(
1− exp

(
Qpω(h)

β(ω)

))(1−O)

•Mean squared Bellman error (MSBE):

β(ω) = Eh∼p(h|O;ω)

[(
Qpω(h)− Q̂(h;ω)

)2
]

•Qpω(h) is the target Q-function: the action-value of the policy corresponding to the
action-posterior distribution, p(a|s,O;ω)

• Inference objective:

ELBO(q, ω) =

∫
Qpω(h)p0(s)π

q(a|s)dh
β(ω)

+H(q(h)) + Eh∼q(h)[log(p(h))]

DISTRIBUTION/
FUNCTION

DEFINITION

Conditional
Likelihood

p(O|h;ω) = exp

(
Qpω(h)

β(ω)

)
Posterior
Q-function

Qpω(h) =

∫ ( ∞∑
i=0

γiri

)
pp(a|s,O;ω)(τ |h)dτ

Mean Squared
Bellman Error

β(ω) = E
h∼p(h|O;ω)

[(Qpω(h)− Q̂(h;ω))2]

Prior p(h) = U(h)

Joint p(O, h;ω) = exp

(
Qpω(h)

β(ω)

)
p(h)

Posterior p(h|O;ω) =
exp
(
Qpω(h)
β(ω)

)
p(h)∫

exp
(
Qpω(h)
β(ω)

)
dh

Action-posterior p(a|s,O;ω) =
exp
(
Qpω(h)
β(ω)

)
∫

exp
(
Qpω(h)
β(ω)

)
da

Variational
Posterior

q(h) = p0(s)π
q(a|s)

Log-likelihood L(O;ω) = ELBO(q, ω) + KL(q(h) ‖ p(h|O;ω))

Evidence
Lower Bound

ELBO(q, ω) =

∫
q(h) log

(
p(O, h;ω)

q(h)

)
dh

Main Results

Lemma 1 (Characterisation of posterior). If all optimal policies and corresponding opti-
mal Q-functions can be represented exactly by distributions parametrised by ω, then the
action-posterior p(a|s,O;ω) defines a soft policy with respect to Qpω(h) with the tem-
perature given by the residual error β(ω). In the limit limβ(ω)→0 p(a|s,O;ω) is greedy
with respect to Qpω(h).

Theorem 1 (Optimal Posterior Distributions as Optimal Policies).For any ω that max-
imizes L(ω), the corresponding policy induced must be optimal, i.e.,

ω∗ ∈ arg max
ω
L(ω) =⇒ p(a|s,O;ω∗) ∈ arg max

π
Jπ.

Variational Actor-Critic Algorithm

Variational E-Step (Actor):

θk+1 ← θk + αactor∇θELBO (ωk, θ) ,

with

∇θELBO (ωk, θ) =∇θ

T−1∑
t=1

∫
Q̂(st, a;ω)πq(a|st; θ)da + β(ω)∇θ

T−1∑
t=1

H(πq(a|st; θ)),

where we have used a T time step Monte Carlo estimation of the outer expectation with
respect to s

Variational M-Step (Critic):

ωk+1 ← ωk + αcritic∇ωELBO (ω, θk+1) ,

with
∇ωELBO (ω, θk+1) = Eh∼q(h;θk+1)

[
∇ωQ̂(h;ω)

(
ψ(h)− Q̂(h;ω)

)]
.

Our choice of estimate ψ(h0) thus determines the form of policy evaluation. We can
recover, for example, recover Q-learning by letting ψ(h) = r(h) + γmax′a Q̂(h′;ωk)

Conclusions

•Owing to its generality, our framework is amenable by a wide range of variational
inference methods

•Our framework does not suffer from the same shortcomings as existing RL-as-inference
methods

•An empirical evaluation showed that virel outperforms or performs on par with
current state-of-the-art RL models, performing particularly well in difficult high-
dimensional domains (such as MuJoCo humanoid)


