BatchBALD

Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning

O AT ML

Active Learning

A key problem in deep learning is data efficiency. In Active Learning,

we iteratively acquire labels for only the most informative data points.

Train model on Evaluate acquisition Experts label Add newly
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training set pool set using the highest points to
9 model acquisition score training set

BALD Acquisition Function’

We implement a Bayesian Neural Network using dropout VI2 and

define the acquisition function a as follows:
0

agaLp ({71, -, 2p} , P (W[Dirain)) := Z I (ys; w|@i, Dirain)
i=1
I (y’ w\x, Dtrain ) =H (y'-ertrain ) - EP(W‘Dtrain ) [H (y\fﬁ, w, Dtrain )]

First term captures general uncertainty of model.
Second term captures the uncertainty of a given draw of the model
parameters

Score is high when model is uncertain in general (high entropy), but
per parameter sample certain (expectation of sample entropy low).

Batch Acquisitions

In practice, we acquire the top-b highest scoring points:

{z7,...,2;} = argmax a({z1,...,2},DP (W|Dtrain))
152} S Dpool
But naively applying BALD this oss
way leads to redundant

acquisitions, under performing
random acquisitions!
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Results on Repeated MNIST:

Andreas Kirsch*, Joost van Amersfoort*, Yarin Gal

OATML, Department of Computer Science, University of Oxford

{andreas.kirsch, joost.van.amersfoort, yarin}@cs.ox.ac.uk

BaichBALD

We propose to compute BALD over a batch of points:

aBatchBALD ({Z1, -+, 2}, P (W[Dprain)) = 1y -3 @b, Dirain)

Expanding the Mutual Information:

I (1. @10, Dirain ) = H [(¥1:0®1:05 Devain ) — Ep(e)Dovan ) H [(¥1:0/®1:5, @, Dirain )
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BatchBALD

BALD counts the dark areas double, while BatchBALD correctly
computes the surface of the overlapping area

Computing BatchBALD

Computing joint-entropy exact requires evaluating exponential
amount of candidates. In BatchBALD, we compute a greedy
approximation and build up acquisition batch one by one. We show

1
the approximation is submodular with an error bounded by 1 — —.
e

Definition: A function f defined on subsets of Q is called submodular if
for every set A C Q and two non-identical points x,y € Q\A:

FA Uy -fA)S(FAUXD)-fAN+(fAUV{YH-f(A)
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Computing BatchBALD requires
keeping dropout masks constant
when evaluating the acquisition
score across the unlabelled pool
set. As a side-effect it reduces
variance when computing
acquisition score! Also useful in
BALD and other applications
using dropout VI.
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An extension of MNIST containing letters:
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CINIC-10 is a combination of CIFAR and ImageNet:
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