Gossip Algorithms
for Distributed Learning

Mike Rabbat

Joint work with
Mido Assran, Nicolas Loizou, Jianyu Wang,
Vinayak Tantia, and Nicolas Ballas

Data-Parallel Training in Machine Learning

e Contemporary ML involves training
large models on very large datasets

m

1
[] [] [] :: l ° .
mlaI}El%}llze flx) = — jil (2; &)

Data-Parallel Training in Machine Learning

e Contemporary ML involves training ® Image classification
large models on very large datasets e Model: ResNet-50 (25.6M params)
1 « :
minimize f(z) = - S i €;) e Data: ImageNet
= ® 1M training instances

@ 1000 classes

@ Machine translation
e Model: Transformer (210M params)
e Data: WMT"16 En-De
® 4.56M sentence palirs
e 32K vocabulary

Data-Parallel Training in Machine Learning

e Contemporary ML involves training
large models on very large datasets

m

1
[] [] [] :: l ° .
mlilel%}llze flx) = — jil (2; &)

e Workhorse algorithm:
Stochastic gradient descent

b
1

k+1 k k (k). ¢(k)

7)—m()—a()—bg Vi(x &)

g=1

® Image classification

e Model: ResNet-50 (25.6M params)
e Data: ImageNet

e 1M training instances

e 1000 classes

® Machine translation

e Model: Transformer (210M params)
e Data: WMT"16 En-De

® 4.56M sentence palirs

e 32K vocabulary

Data-Parallel Training in Machine Learning

e Contemporary ML involves training
large models on very large datasets

m

1
[] [] [] :: l ° .
mlilel%}llze flx) = — jil (2; &)

e Workhorse algorithm:
Stochastic gradient descent

b
1
k+1) _ ,.(k k (k). (k)
g — (k) oz()bg VIi(z\";8;7)

g=1

Data-Parallel Training:

e Exploit parallel computing to process

examples in parallel

® Image classification

e Model: ResNet-50 (25.6M params)
e Data: ImageNet

e 1M training instances

e 1000 classes

® Machine translation

e Model: Transformer (210M params)
e Data: WMT"16 En-De

® 4.56M sentence palirs

e 32K vocabulary

Data-Parallel Distributed Optimization

Parallelize gradient evaluation: (Z Vi(x (). f(k) ZVZ (k). g““))

Data-Parallel Distributed Optimization

b1
. . . 1
Parallelize gradient evaluation: ; (Z Vi(z®); S(k) +ZVZ OF g“‘“))
—

Master-Worker

Data-Parallel Distributed Optimization

b1
1
. . S (k). (k) (k). (k)
Parallelize gradient evaluation: ; (El Vi(z\"; 85 g Vi(z*"; &5)

Master-Worker

Data-Parallel Distributed Optimization

b1
. . . 1
Parallelize gradient evaluation: ; (Z Vi(z®; f(k) +ZVZ OF g““))
—

Master-Worker

Vii(a®) Vfa(a®) Vfa(a®) V(")
Distributed gradient descent:

n
Rl — gk aZVfi(a:k
i=1

Data-Parallel Distributed Optimization

b1 bn,
. . . 1
Parallelize gradient evaluation: ; (E Vl(x(k);£§f€1))+---+ E Vl(zv(k);ffl)))

Master-Worker Decentralized

V(") Vi(z") Vis(@®) Via(a")

Distributed gradient descent:

it = oF — aZVfi(a:k)
i=1

AllReduce: Exact distributed averaging

Example: Ring Algorithm

AllReduce: Exact distributed averaging

Example: Ring Algorithm

Each node sends/receives
2d values

Delay: O(n)

AllReduce: Exact distributed averaging

Example: Ring Algorithm

Fach node sends/receives Other algorithms
2d values (spanning tree, buttertly)
with delay O(log n)

Delay: O(n)

AllReduce: Exact distributed averaging

Example: Ring Algorithm

Each node sends/receives Other algorithms

2d values (spanning tree, buttertly)
with delay O(log n)

Delay: O(n)

Tightly coupled

Computes exact average of any inputs

Decentralized Multi-Agent Optimization

Fully-Connected Multi-Agent (aka, “gossip”)

This Talk Synchronous methods build on AllReduce have problems:
@ Move at the pace of the slowest node
e Sensitive to delay variations

Aspirations:
® Decouple communications to be less sensitive (asynchronous)
e Ultimately, run faster and be more resource-efficient

Contributions:
e Analysis of stochastic gradient push for non-convex functions

@ Demonstration of stochastic gradient-push
for training deep networks

Brief Historical 1986 Tsitsiklis, Bertsekas, & Athans

Perspective: e Synchronous and asynchronous block coordinate descent

e All agents know the global objective

2003 Kempe, Dobra, & Gehrke

e Push-sum distributed averaging
e Fully-connected, randomized activations

2009 Nedic & Ozdaglar

e Synchronous multi-agent gradient descent

2012 Tsianos & Rabbat

e Push-sum distributed dual averaging

2074-18 Nedic & Olshevsky; Zeng & Yin; Nedic, Olshevsky, & Shi

e Faster, synchronous, push-sum-based optimization

Survey:
A Nedic, A Olshevsky, & M Rabbat
Proceedings of the IEEE, May 2018

Distributed Averaging over Directed Graphs

Problem: All nodes have an initial value x and they should

all approximately compute the average X = — Zl 1 xV)

Design choice: Only use push-type communication

Distributed Averaging over Directed Graphs

Problem: All nodes have an initial value x and they should

all approximately compute the average X = — Zl 1 xV)

Design choice: Only use push-type communication

Distributed Averaging over Directed Graphs

Problem: All nodes have an initial value x and they should

0

all approximately compute the average x = — Zl 1 X

Design choice: Only use push-type communication

Why?
e Asynchronous operation — directed communication

e Easyto implement

e Amenable to analysis

Distributed Averaging over Directed Graphs

Column stochastic matrix P

Pi>0&(j—1) €k

Products converge (Perron-Frobenius):

lim P* = w17t
k— o0

lim Pfe = (le)
k— o0

Distributed implementation as linear iterations

:C?(;k) _ ZPi,ja7§'k_1) _ Z P@"jx§-k—1)
J

jENIn

10

Distributed Averaging over Directed Graphs

Column stochastic matrix P

Pi>0&(j—1) €k

Products converge (Perron-Frobenius):

lim P* = w17t
k— o0

lim Pfe = (le)
k— o0

Distributed implementation as linear iterations

xgk) _ Zpi,jxyc—l) _ Z P@"jx§~k—1)
J

jENIn

Push-Sum Algorithm [Kempe, Dobra, Gehrke 2003]
nitialize x;|0] € R, w;|0] =1
mplement linear iterations via distributed message passing

z[k] = Pz[k — 1] = P"z[0] — = (1"z[0])
wlk] = Pwlk — 1] = P*w[0] — nmw

zi[k] = zi[k]/wilk] — (17 2[0])/n

10

Stochastic Gradient-Push [Nedic & Olshevsky, 2016]

Node i initializes x,go) = z§0> c R* Vi and w§0) =1

For iterations k=0,1,...K at node i:
e Sample new mini-batch gradient VFi(sz), fi(k))
e Update

* Gradient descent locally
* Push-Sum averaging

1

® Send/receive messages
(P(k) (3) pk) (k3 >)

ZJJ]

and aggregate
I R

]EN-m(k)
(k‘|‘1) Z P(k) Uf"‘)

jeN =R
(k+1) (k+1) (k+1)
< — €y /wz

11

Stochastic Gradient-Push [Nedic & Olshevsky, 2016]

Node i initializes x,go) = z§0> c R* Vi and w§0) =1

For iterations k=0,1,...K at node i:
e Sample new mini-batch gradient VFi(sz), fi(k))
e Update

* Gradient descent locally
* Push-Sum averaging

T — overlap SGP

I R (RN

® Send/receive messages
(P(k) (3) pk) (k3 >)

ZJJ]

and aggregate
I R

jEN-m(k)
(kﬂ) Z P““) (k+) Semi-synchronous variant
) Gossip and update in separate threads,
JEN,
Can be up to 7 steps out of sync

Zi(k—|—1) _ x§k+1)/w§k+1)

11

Convergence guarantees

L 1 :
mlilelgblze E ; Le, [Fz(mz, fz)}

subject to x; = x;,V(i,5) € E

Let fi(z) =Eg, [Fi(z;&)] and suppose that
1. L-smooth functions [|[Vfi(z) = Vfi(y)|| < Lz — y|

2. Bounded variance Eg,||VFi(zi;&) — Vii(2)|)? < o?

3. Similar objectives Z IV fi(x F()|]? < ¢ Bijral, Sarwate, Srebro (2017)

4. Communication topo\ogles are B-strongly connected
(I4+1)B—1

k
J E™ strongly connected, where E® = {(i,5): P* > 0}
k=IlB

with diameter A

12

Theorem. Run SGP for K iterations with a = \/n/K.
There exist constants C' > 0, ¢ € [0,1), P, and P, that depend on A, (P%)),
and 7, such that if

(1—q)* " (1—*(f(@@) — f*+ £5)2 (1 — q)2(f(2@) — f* + £

{ nLAC*4602 nL4C4 P2 nL2C2 P, }
K > max | T

then
K—1

1 ; |2 12(f @) - £ Le-)
e kz::o V@) < Nevce e 2

4

M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic Gradient Push for Distributed Deep Learning,” ICML 2019.
Related result for push-pull: Lian, Zhang, Zhang, Hsieh, Zhang, and Liu, “Can Decentralized Algorithms Outperform Centralized Algorithms?” NeurlIPS 2017.

13

Theorem. Choose K sufficiently large and use o = \/ n/K. Then

K—1 n

1 2 1 1
_ d (k) _ (k) |
L S e[<0+)

k=0 =1

and

I = e NIE 1 11
o 2 2|V SO(\/nK'K'KW)

k=0 =1

M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic Gradient Push for Distributed Deep Learning,” ICML 2019.

14

Experimental Evaluation

e Training ResNet50 (25.6M parameters) on ImageNet
e System: 32 NVIDIA DGX-1 servers (8 GPUs/server)

@ Look at scaling from 4 - 32 servers (32 - 256 GPUs)
e Communicating over either 10Gbps Ethernet or T00Gbps InfiniBand

e All implemented in PyTorch 0.4, wraps MPIl and NCCL

e Comparison with baselines:

@ AllReduce-based SGD

® D-PSGD, AD-PSGD decentralized push-pull stochastic gradient methods
[Lian, Zhang, Zhang, Hsieh, Zhang, and Liu, NeurlPS 2017, ICML 2018}

15

Directed Exponential Communication Strategy

Cyclic over edges in the binary hypercube

® Each node sends and receives
one message per update

@ Nodeisendsto i+2°modn

i + 21 mod n

i 4 olog2(n=1)1 1,04 n

Interesting properties:
@ Balanced communication workload

e For only averaging (no optimization), all nodes
exactly have the average after log,(n) steps

16

(-
N

-
o

&
o

Time per iteration (s)
- O
.ll> 00

—~— AR-SGD (Ethernet) /

—~— D-PSGD (Ethernet)
—~— SGP (Ethernet)

SGP (InfiniBand)
AR-SGD (InfiniBand)

\
1

| A
L L T
q.é::::3?:::'.'_"::::::?:::::::::::::: _______ _>]/
4 3 16 32

Number of nodes

Images/sec.)

(

put
-
)
o
-
o

Through

= N N
Ul - ol
- o -
- o -
o o -

5000 -

| —<— D-PSGD (Ethernet)
| —~— AR-SGD (Ethernet)

-¢- SGP (InfiniBand) X
->¢- AR-SGD (InfiniBand) .-~
—— SGP (Ethernet)

16 32

Number of nodes

4 8

17

Experiment Results

® SGP and OSGP are faster per iteration, but introduce additional noise

® Improve accuracy by running for more epochs

Train Acc. Val. Acc. Train Time
AR-SGD 76.9% 76.2% 5.1 hrs. (90 epochs)
AD-PSGD 80.3% 76.9% 4.7 hrs. (270 epochs)
SGP 75.6% 74.9% 1.5 hrs. (90 epochs)
SGP 80.0% 77.1% 4.6 hrs. (270 epochs)
1-OSGP 81.8% 77.1% 2.7 hrs. (270 epochs)

32 nodes (256 GPUs), over 10Gbps Ethernet

18

Slow Momentum (SlowMo) Improves Convergence

Algorithm 1: Slow Momentum

Xt,0

Input: Base optimizer with learning rate ~;; Inner loop steps 7;
Slow learning rate «; Slow momentum factor 3;
Number of worker nodes m. Initial point &y o and
initial slow momentum buffer ug = O.

fort € {0,1,...,T — 1} at worker ¢ in parallel do

Reset/maintain/average base optimizer buffers

for k € {0,1,...,7— 1} do

| Base optimizer step: miz,)c = a:g&
end

= el

m 0
Exact-Average: Tt = — > . mﬁl

: _ 1
Update slow r.nomentum. U1 = Pus + - (0 — Tt.r) T steps of
Update outer iterates: Tt41,0 = Tt 0 — QAYtUtt1

Xt,’r _/nyut

end base optimizer

J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum,”
October 2019. https;//arXiv.org/abs/1910.00643,

19

https://arXiv.org/abs/1910.00643

: 3.5 N 3.6 v
109 —-- AR-SGD ™\n —-= AR-SGD = \ —-= AR-Adam
- ? T4V ——- SGP L 301\« : - == SGP %3-4‘ \ ~==- SGP
& g\l — SGP-SLoMo | 2 : —— SGP-SLOMO _ \ —— SGP-SLOMO
'_] —1 ;_] 2.5 wn 3.2
g k= — 3.0-
5 '€ 2.0+ o0
= 1072 ;;3 -5 2.8
1.5- 'S
—~ 2.6
e 1.0 —————————————— = - - . '
0 25 50 75 100 125 150 175 200 0O 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25
Number of Epochs Number of Epochs Number of Epochs
50 100 2.8 ;
— § ¥ — =) \ — o =
45 AR-SGD ool \ % AR-SGD 3, ‘ AR-Adam
5 401 -—- SGP = _P;\'-'v"': ~—- SGP :2 | \ ~—- SGP
E s —— SGP-SLOMO 5 \[‘ Py —— SGP-SLoMo | 2.6 \ —— SGP-SLOMO
= 30 g 10 v 8 2.5
= 2 60- ’ —
]2 = = 2.41
2 20- 2 507 2
= < 2.3
S 55 S - g
10- — 30 - & 2.2
0 25 50 75 100 125 150 175 200 0 20 40 60 80 0 5 10 15 20 25
Number of Epochs Number of Epochs Number of Epochs
(a) CIFAR-10, batch size:4k. (b) ImageNet, batch size:8Kk. (c) WMT16 En-De, batch size:200k.

facebook Artificial Intelligence

Summary

facebook
Artificial Intelligence Research

Push-only communication makes a difference
e Model non-blocking asynchronous communication

e Communication and computation delays

Ongoing work and extensions
e Quantization, less frequent aggregation
® Improving accuracy with momentum

SGP Paper online at arxiv.org/abs/1811.10792
SlowMo paper at arxiv.org/abs/1910.00643
Code online at github.com/facebookresearch/stochastic_gradient_push

mikerabbat@fb.com

21

https://arxiv.org/abs/1811.10792
https://arxiv.org/abs/1910.00643
https://github.com/facebookresearch/stochastic_gradient_push
mailto:mikerabbat@fb.com

