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Outline

* Self-supervised learning saga
*Orisit?




Self-supervised learning like we do

1. Unlabelled, large collection of images
2. Train your network without labels

3. Use the image representations (vectors)
for new tasks
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Self-supervised learning like we do?

Proxy

K CNN task/ILoss
Unlabelled data

+ transformations e.g. RotNet

e.g. DeepCluster

* Run k-means on features

* Train classifier on k classes

* Repeat for 200 epochs

* C(Create 4 classes based on rotations
* Exploits photographer bias
e Simple but works

/_\ l M 3 @ Deepclustering for unsupervised learning of visual features Unsupervised representation learning by predicting image rotations
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Or colorizing images

,/"1 M S Zhang, Isola, Efros.
. Colorful Image Colorization.
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Hypothesis

“Priors” What/how humans learn

Transformations




Getting there, but not quite yet

AIMS
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Accuracy in % for ImageNet Linear Classification
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Where are we?

“Priors” What/how hfimans learn

Transformhptions
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“Learn” from one image...
using multiple transformations
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Learned first convolutional layer - from one image

Method, Image A Method, Image B

BiGAN RotNet DeepCluster BiGAN RotNet DeepCluster
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Performance

Comparison of random, DeepCluster (1 & 1M images) and supervised

B Random ™ 1-image ™ 1M images ™ Supervised
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Conclusion

1. Early layers of deep networks contain limited information about
natural images

2. These can be learned through self-supervision or supervised learning
3. Notably, only one image + transformations are necessary for this
4. Much space to go the right direction in self-supervised learning




Style transfer with a 1-image trained CNN
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Appendix
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Table 4: Finetuning experiments The pre-
trained model’s convl and conv2 are left
frozen and only the higher levels are re-
trained using ImageNet LSVRC-12 training
set. Accuracy 1s averaged over 10 crops.

cl c2 ¢c3 c4 cb
Full sup. 19.3 36.3 44.2 48.3 50.5

BiGAN, A 22.5 37.6 44.2 47.6 48.3
RotNet, A 22.0 38.2 44.8 49.2 51.8
DeepCluster, A 21.8 35.9 43.6 48.8 50.4

AIV
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CIFAR-10

convl conv?2 conv3 convi

(a) Fully sup. 66.5 70.1 72.4 75.9
(b) Random feat. 57.8 99.9 54.2 47.3
(¢) No aug. 57.9 06.2 54.2 47.8
(d) Jitter 58.9 58.0 57.0 49.8
(e) Rotation 61.4 08.8 56.1 47.5
(f) Scale 67.9 69.3 67.9 59.1
(g) Rot. & jitter 64.9 63.6 61.0 53.4
(h) Rot. & scale 67.6 69.9 68.0 60.7
(1) Jitter & scale 68.1 71.3 69.5 62.4
(G) All 68.1 72.3 70.8 63.5




