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Outline

Motivations.

Background: Bayesian Inference with Gaussian
Processes.

Problem Formulation: Probabillistic invariance.
Methods: Safe-approximation of invariance property.

Case of Study: Empirical analysis of RelLU fully-
connected Neural Networks via GP with RelLU kernel.



Robustness for Bayesian
Learning, Why?

 Bayesian methods are employed in safety critical
applications, where uncertainty estimation is necessary
(e.g. diagnosis, medicine intake, control systems...).

* Robustness guarantees are needed to prove the
correctness of the model in a probabilistic fashion.

e Current methods either neglect uncertainty or are based
on empirical approaches (e.g. variance thresholding)

Problem: Provide probabilistic guarantees for GPs.




Background



Bayesian Inference with GPs

e Step 1: Definition of a GP
prior distribution.




Bayesian Inference with GPs

e Step 1: Definition of a GP e Step 2: Conditioning on
prior distribution. training data.




Problem Formulation



Probabilistic Invariance

* Probabilistic generalisation of problem associated with
existence of local adversarial examples.

 Intuitively, we want to count the number of functions
extracted from the GP for which deterministic invariance

does not hold.



Probabilistic Invariance

* Probabilistic generalisation of problem associated with
existence of local adversarial examples.

 Intuitively, we want to count the number of functions
extracted from the GP for which deterministic invariance
does not hold.

Consider ™ and a neighbourhood 1’ Let 0 be the adversarial
threshold, then invariance probability is defined by:

¢(x*,T,0) = P(3x’" € Ts.t.||z2(x") — 2(x™))|| > 0)




Probabilistic Invariance
(in Figures)
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Methods



Upper-bound on Invariance

« Computation of ¢(x™, T, d) is not trivial as it involves
solutions of uncountably many optimisation problems.
Instead, we compute a safe approximation.
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Case of Study



GPs and Neural Networks:
Experimental Settings

e Bayesian fully-connected neural networks converge in
distribution to specific GPs, as the number of neurons
approaches infinity™.

e \We can employ the method we developed to perform
empirical analysis of fully connected NNs.

* We focus on RelLU NNs applied to the MNIST dataset.

e For scalability, we provide feature-level analysis using SIFT.

*Neal, R. M. Bayesian learning for neural networks. Springer, 2012.



Parametric Analysis on
Adversarial Thresholds
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Normalised Variance

Parametric Analysis on
Variance

Analysis of how variance changes in T depending on
number of training samples and layers.

Normalised Variance
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Conclusions

We developed a formal approach for invariance
analysis of Bayesian inference with Gaussian
Processes.

Developed an algorithmic approach for computation of
upper-bound on invariance probability.

We relied on the relationship between Bayesian NNs
and GPs, to analyse NN behaviour at infinity width limit.

Provided experimental results on MNIST.



Bayesian Inference with GPs
(in Formulas)

e Let z be a GP with prior mean p and variance ..
Consider a training set D = {(x;, ¥;) }s=1.... n- The goal
of Bayesian inference is to find:

Z2=2z|D

* For GPs this can be done analytically, obtaining a GP with
posteriori mean and variance given by:

ia*) = p(a”) + Sor 5 (y — 1)
Dot ar = Sar av — ax DB p e b



Proof Sketch

e \We want to upper-bound:

¢(x*,T,0|D) = P (sup,er |[2(2) — 2(z7)[| > 9)

e Since z°(z*,x) = z(z*) — z(x) Is still a GP we can employ the
Borell-TIS inequality, which upper-bounds the supremum:

(S—E[supweT 29 (x* ,a:)])2

P (supyer||2(x*, 2)|| > 6) < e

e Finally, Elsup,cr 2°(x*,x)] can be over-approximated using
the Dudley entropy integral.



Constant Computation

The upper-bound computation requires computation
of different constants e.g.:

sup p(x*) — p(x) = p(z*) — inf p(x) = ple*) — inf X, pX5 0y
xeT x&T xrc'l ?

We define two functions ¥ and 1 that decompose the
GP variance as: X, ., = ¥ (¢ (2, z)).

Using interval analysis on ¥ and optimising ¢ we can
compute lower and upper bounds on each 3, .,

Thanks to linearity, we propagate these to get bounds
on the sup; and refine via Branch and Bound.



