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Can RL improve existing heuristics?

• Boolean Satisfiability (SAT) impacts many fields of the industry and
academia, e.g. formal verification, chip design, security, combinatorial
optimisation.

• SAT solvers rely on heuristics elaborately crafted with a lot of trial and
error by humans.

• Some of the heuristics need a warm-up period.

• A solver should always give a correct answer.

• Pre-solving phase computation is cheap (e.g. training models)

• SAT is a sequential decision problem.

Conflict-Driven Clause Learning (CDCL)

Function CDCL(initial assignments) :
while not solved do
var, value ← branching heuristic();
unit propagation(var, value);
build implication graph();
analyse conflicts();

end

return SAT assignments OR unSAT

SAT problem as a graph
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(a) Graph representation of
(x1 ∨ x2) ∧ (¬x2 ∨ x3)
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(b) Graph Q-function values for setting
variables to true and false respectively.

Graph-Q-SAT (GQSAT)

• GQSAT replaces VSIDS heuristic in CDCL for the first k steps while
VSIDS is warming up.

• GQSAT uses DQN with a graph neural network as a function
approximator.

GQSAT reduces number of decisions by 2-3X

MRIR for GQSAT (SAT-50-218)

dataset mean min max

SAT 50-218 2.46 2.26 2.72
SAT 100-430 3.94 3.53 4.41
SAT 250-1065 3.91 2.88 5.22

unSAT 50-128 2.34 2.07 2.51
unSAT 100-430 2.24 1.85 2.66
unSAT 250-1065 1.54 1.30 1.64

• GQSAT improves VSIDS.

• GQSAT
generalises across problem size.

• GQSAT
generalises from SAT to unSAT.

GQSAT makes efficient decisions from step one
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GQSAT generalizes to other problem structures to a lesser

extent

dataset variables clauses
MiniSat

iterations

flat-30-60 90 300 10
flat-50-115 150 545 15
flat-75-80 225 840 29
flat-125-301 375 1403 106
flat-150-360 450 1680 179
flat-175-417 525 1951 272
flat-200-479 600 2237 501

30-60 50-115 125-301 150-360 175-417 200-479
Flat Graph Coloring dataset
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GQSAT is data efficient
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Future Work

• Investigating graph structure influence on GQSAT performance.

• Interpreting the results using the graph structure.

• Scaling to larger problems.

• From reducing iterations to speeding up.
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