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• Traffic congestion leads to longer travel times 
and increased carbon emissions.

• True dynamics of congestion are unknown. 

• Traffic flow is modelled as a non-linear
dynamical system.

• One autonomous vehicle is added.

• An optimal control problem is created to 
minimise the impact of disturbances.

• Model privacy is conserved by solving in a 
decentralised way.

• Model privacy is needed to protect data safety.
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• Alternating direction method of multipliers 
(ADMM) was used to solve the optimal control 
problem.

• Ideas from chordal decomposition of sparse 
block matrices are used.

• The optimal control problem was converted to 
an SDP.

• The optimal control problem was solved using 
centralized control.

• ADMM algorithm was incorporated into the SDP.

• Further research will concentrate on finding 
ways to improve convergence.

Modelling the Traffic Flow Problem
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• 𝑖 is the vehicle number, where 𝑖 = 1…𝑁.	

• Autonomous vehicle is represented by 𝑖 = 𝑁.

• 𝑠,	is the distance between vehicle 𝑖 and	𝑖 − 1, 𝑠∗ is the equilibrium spacing.

• 𝑣,	is the velocity of vehicle 𝑖, 𝑣∗ is the equilibrium velocity.

• 𝑢(𝑡) is the control input, 𝜔(𝑡) is the disturbance.

• 𝛼4,8,9 represent the driver’s sensitivity to errors in the spacing /velocity, they follow a uniform distribution.

Optimal control problem ADMM
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𝜆TU4 = 𝜆T + 𝐸𝑥TU4 + 𝐹𝑦TU4 − 𝑐

First order splitting method for optimisation,

where 𝜌 > 0 is a penalty parameter and 𝜆 is the 
dual variable of the penalty parameter.
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subject	to 𝑢 = −𝐾𝑥 ,𝐾 ∈ 𝒦

min
d,e,f

Trace 𝑄𝑋 + Trace 𝑅𝑌
subject	to 𝐴𝑋 + 𝑋𝐴l − 𝐵𝑍 − 𝑍l𝐵l + 𝐻𝐻l ≼ 0 ,

𝑌 𝑍
𝑍l 𝑋 ≽ 0, 𝑋 ≽ 0, 𝑍𝑋p4 ∈ 𝒦

The objective function minimizes the impact of the 
disturbance on the outputs of the system.

Problem reformulated into an SDP with linear
constraints instead of the 𝐾 ∈ 𝒦	sparsity constraint.

where

Methods and OutcomeProblem Overview

The non-linear model is simplified into a standard linear dynamic model
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