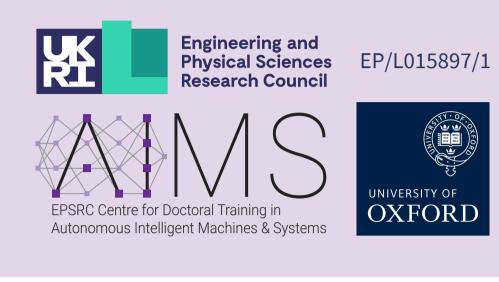
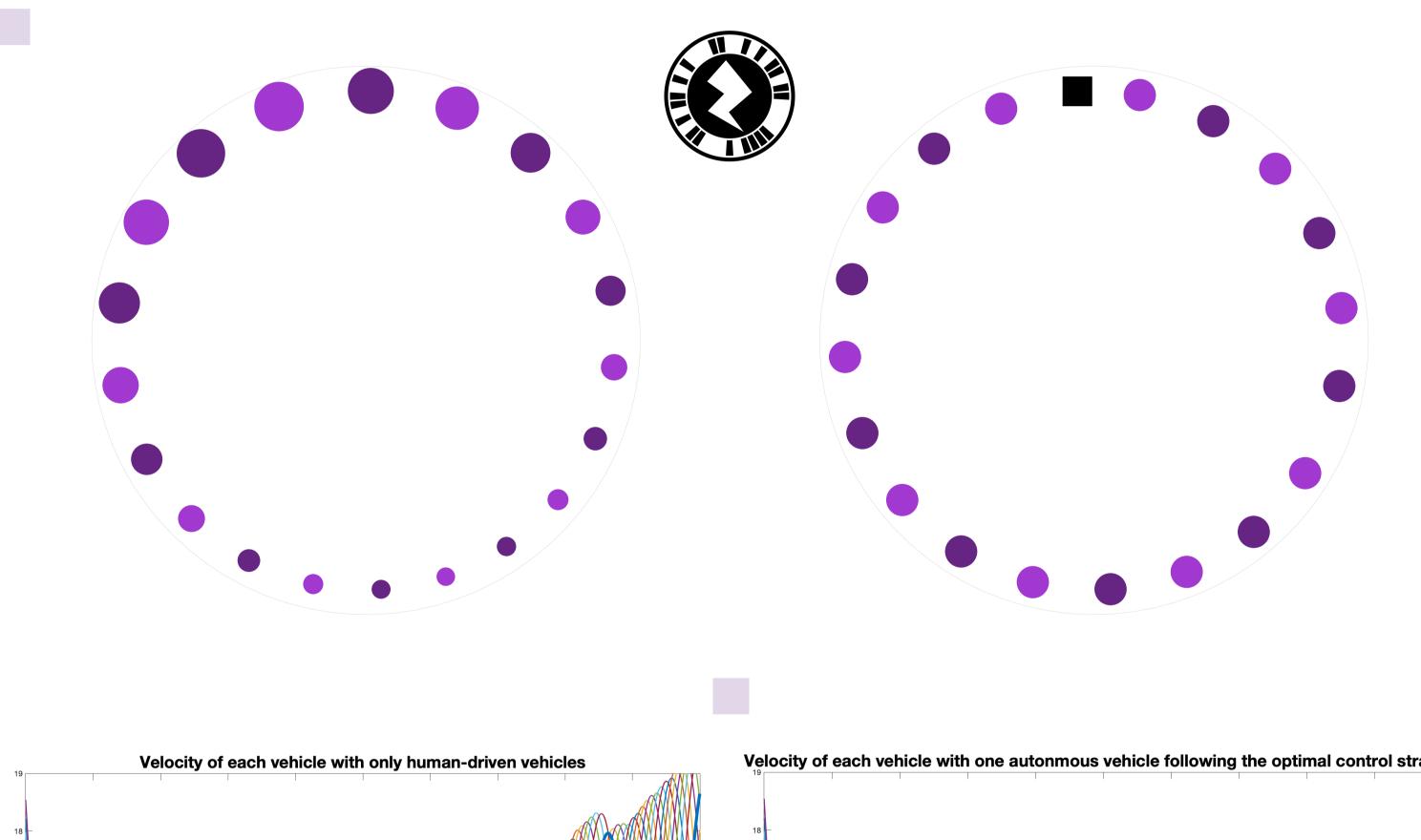
ADMM for Control of Mixed Traffic Flow with Human-driven and Autonomous Vehicles

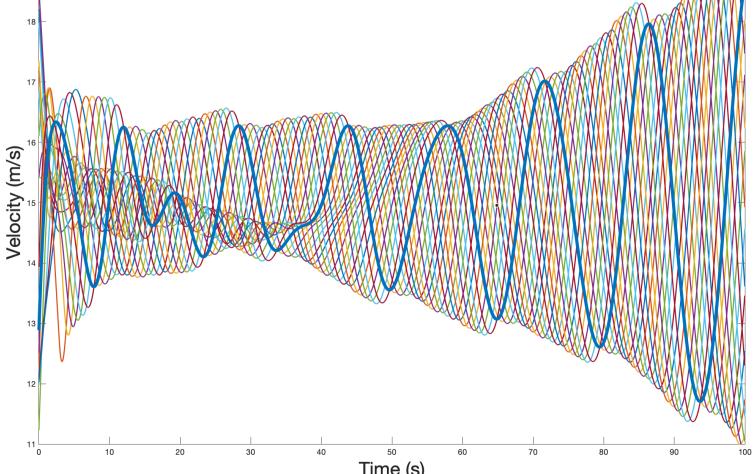
Matthew Newton¹, Yang Zheng², Antonis Papachristodoulou¹

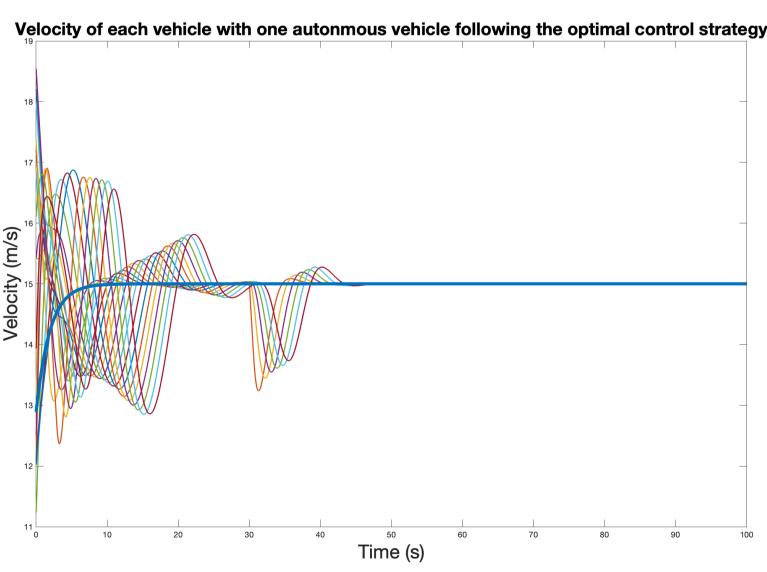
¹ Department of Engineering Science, University of Oxford, Oxford, United Kingdom ² School of Engineering and Applied Sciences, Harvard University, Massachusetts, USA

Correspondence: matthew.newton@worc.ox.ac.uk









Problem Overview

- Traffic **congestion** leads to longer travel times and increased carbon emissions.
- True dynamics of congestion are unknown.
- Traffic flow is modelled as a **non-linear** dynamical system.
- One autonomous vehicle is added.
- An optimal control problem is created to minimise the impact of **disturbances**.
- Model **privacy** is conserved by solving in a decentralised way.
- Model privacy is needed to protect **data safety**.

Modelling the Traffic Flow Problem

The non-linear model is simplified into a standard linear dynamic model $\dot{x}(t) = Ax(t) + Bu(t) + H\omega(t)$,

where		0	•••	0	A_2		ר0ק	$, H = \begin{bmatrix} H_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$
	A_2	A_1	0	• • •	0		0	$\prod_{i=1}^{n}$
A =	0	•.	••	••.	:	, B =	:	$,H=\begin{bmatrix} 0\\ \vdots \end{bmatrix}$
	:	•.	A_2	A_1	0		0	
	L 0	• • •	0	C_2	C_1		L_1	ΓU

- *i* is the **vehicle number**, where $i = 1 \dots N$.
- **Autonomous** vehicle is represented by i = N.
- s_i is the **distance** between vehicle *i* and $i 1, s^*$ is the equilibrium spacing.
- v_i is the **velocity** of vehicle *i*, v^* is the equilibrium velocity.
- u(t) is the **control** input, $\omega(t)$ is the **disturbance**.
- $\alpha_{1,2,3}$ represent the driver's **sensitivity** to errors in the spacing /velocity, they follow a uniform distribution.

Optimal control problem

The objective function minimizes the impact of the disturbance on the outputs of the system.

 $\min_{\nu} \|G_{z\omega}\|^2$ subject to u = -Kx, $K \in \mathcal{K}$

Problem reformulated into an SDP with **linear** constraints instead of the $K \in \mathcal{K}$ sparsity constraint.

 $\min_{X,Y,Z} \operatorname{Trace}(QX) + \operatorname{Trace}(RY)$ subject to $AX + XA^T - BZ - Z^TB^T + HH^T \leq 0$,

$$\begin{bmatrix} & Z \\ T & X \end{bmatrix} \ge 0, X \ge 0, ZX^{-1} \in \mathcal{K}$$

Methods and Outcome

- Alternating direction method of multipliers (**ADMM**) was used to solve the optimal control problem.
- Ideas from chordal decomposition of sparse block matrices are used.
- The optimal control problem was converted to an **SDP**.
- The optimal control problem was solved using centralized control.
- ADMM algorithm was incorporated into the SDP.
- Further research will concentrate on finding ways to improve **convergence**.

$$\begin{array}{cccc} 0 & \cdots & 0 \\ H_{1} & \ddots & \vdots \\ \ddots & \ddots & 0 \\ \cdots & 0 & H_{1} \end{array} \right), \quad X_{i} = \begin{bmatrix} \tilde{S}_{i} \\ \tilde{\nu}_{i} \end{bmatrix} = \begin{bmatrix} S_{i} - S^{*} \\ \nu_{i} - \nu^{*} \end{bmatrix}, \\ A_{1} = \begin{bmatrix} 0 & -1 \\ \alpha_{1} & \alpha_{2} \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 0 & 1 \\ 0 & \alpha_{3} \end{bmatrix}, \\ C_{1} = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \quad C_{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad H_{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

ADMM

First order **splitting method** for optimisation,

$$\begin{split} \min_{x,y} f(x) + g(y) \\ \text{subject to } Ex + Fy &= c \\ x^{h+1} &= \operatorname*{argmin}_{x} \left(f(x) + \frac{1}{2}\rho \big\| Ex + Fy^{h} - c + \lambda^{h} \big\|^{2} \right) \\ y^{h+1} &= \operatorname*{argmin}_{y} \left(g(y) + \frac{1}{2}\rho \big\| Ex^{h+1} + Fy - c + \lambda^{h} \big\|^{2} \right) \\ \lambda^{h+1} &= \lambda^{h} + Ex^{h+1} + Fy^{h+1} - c \end{split}$$

where $\rho > 0$ is a **penalty parameter** and λ is the dual variable of the penalty parameter.