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Reinforcement learning (RL) has recently gained a lot of popularity
partially due to the success of deep Q-learning (DQN) on the Atari suite
and AlphaGo. In these domains reward function engineering is trivial.
Many of the Atari suite video games output a score directly and in
AlphaGo the reward signal is simply =1 dependent on whether you win or
lose. For the majority of real-world scenarios designing such a function is
unintuitive. In the application of robotics it is desirable to automatically
craft the reward such that the robot mimics human behavior for any task.

Inverse Reinforcement Learning (IRL), a supervised-learning technique,
learns a cost model from demonstrations. Deep-IRL usually requires a
large quantity of training examples from an expert agent whose
embodiment is very similar to the learning agent. Obtaining many
demonstrations from aesthetically similar robots is generally costly and
time-consuming.

This project investigates a Max-Entropy IRL approach that leverages the
representational power of Inception, Google’s pre-trained deep
convolutional neural network (CNN), through transfer learning to learn a
reward function from a limited number of demonstrations (in many cases
one) and an agent with a different embodiment to the one being trained (a
human hand as opposed to robot arm).

Approximate Vision-Based Inverse Reinforcement Learning

Maximum Entropy is able to handle expert suboptimality as well as
stocasticity by operating on the distribution over possible expert
demonstration trajectories. It ensures the selection of a reward function
that does not favour any particular trajectory. This is achieved by
maximizing the entropy of the trajectory distribution whilst at the same
time matching the observed feature expectations. In MaxEnt-IRL, the
expert demonstrations t are assumed to be drawn from a Boltzmann

distribution according to:
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Computing the partition function, Z, for high dimensional feature spaces is
unfeasible. [1] overcomes this problem by assuming independence for both
feature and time dimensions, resulting in a naive Bayes IRL model that is
bias but generalizes well to new and unseen environments.
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The ability to generalize well with few demonstrations (including one-shot
learning) lends to the use of Google’s pre-trained CNN, Inception, for
features s,. The activations of several layers within the network are used to
describe the scene in an abstract manner that neglect irrelevant factors for
the task at hand. The Inception network has been trained to classify a wide
variety of images and hence should lend itself favorably to generalization.

Deep RL in high dimensional feature spaces in general takes millions of
training steps to learn a meaningful policy. The sparsity of the obtained
rewards strongly affects the rate of learning. Hierarchical RL, via the
detection of subgoals, can reduce this sparsity. [1] detects subgoals via a
form of clustering and selects a subset of the features to further reduce
over fitting by ranking them as follows:
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And retaining the top n features according to how they are ranked. The
final reward function takes the following form, awarding higher rewards to

latter subgoals to encourage the agent to explore them:
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Results

It was decided to test the algorithm on the robotic grasping task of picking
up a cube. The demonstration provided to the agent was taken by a human

‘expert’. See the video below:
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The first devised test was simple, keeping the agent embodiment the same
as that of the expert. The results were promising'. The highest rewards
were awarded when the cube was picked up, and intermediately sized
rewards for when the agent approached the cube.
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The algorithm was then run in the scenario where both the training and
expert agents had different forms (human and robot hand). The learnt

reward function was able to generalize well despite the changes in physical
appearance.
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The final test trajectory attempted to find the caveats associated with this
particular IRL approach. The results are shown below and demonstrate
that there are some scenarios that this technique cannot handle properly,
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such as occlusion of the rattle2.
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Conclusions and Further Work

By leveraging the expressivity of Google’s pre-trained Inception network,
this project was able to create an algorithm that can learn a reward

function from limited demonstrations which in turn can be used to train
RL.

This techniques is able to generalize well to different embodiments of the
learning agent. Unfortunately, it is unclear that the agent is rewarded
appropriately for the relevant factors of a given task. Learning from
multiple demonstrations partially aided in this respect.

This project aims to further investigate task-specific feature representation
that generalize well across domains, train RL in a virtual simulator, and
port the learnt policy onto the physical robot arm via domain transfer
learning.

Acknowledgements

The author would like to thank Dusyant Rao, Markus Wulfmeier and
Ingmar Posner for their continuous support throughout this project.

References

[1] Sermanet, Pierre, Kelvin Xu, and Sergey Levine.
perceptual rewards for imitation learning. (2016).

”Unsupervised

1 — All the test video plots show the video (top), the rewards (middle), the estimated subgoal (bottom).
2 — For this scenario IRL was given a demonstration with a rattle.




