
  

 
 
Nothing makes a data scientist happier than a new and juicy problem.  
 
The Frontier Development Lab was developed with the agility of the Apollo 
program in mind, equipped with the latest tools in Deep Learning and attended 
by seasoned professionals and early-career researchers in planetary science and 
machine learning. The environment stimulates rapid solution development with 
an emphasis on the cross-pollination of ideas from talented individuals. Teams 
are empowered by industry leaders and the thrill of otherworldly topics. It’s 
truly surreal to work alongside pioneer space scientists and to live on the NASA 
Ames facility in Mountain View, straddled somewhere between past histories 
and future opportunity. 
 
Frontier Development Lab 2017 saw the introduction of several new teams for 
an expanded program, in size and in interest garnered. You can imagine my 
excitement to have been accepted with the Lunar Water and Volatiles team, to 
work toward facilitating our return to that ghostly watchman in the night sky. 
 
To contribute maximally over an 8-week program, a team needs to get on the 
same page, quickly. For our first week we were visited by esteemed 
professionals from the planetary sciences and machine learning communities, 
we shared knowledge, planted seeds of thought and transformed from a group of 
individuals into a team. As the first year that Lunar Water and Volatiles (LW&V) 
was being investigated we had the challenge of getting up to speed with the 
state-of-the-art, understanding where were the barriers for progress and how 
our abilities might be put to best use. 



  

 
NASA’s Richard Elphic describing the challenges of Lunar rover missions. 

 
To share in brief the status quo, ISRA’s Chandrayaan-1 mission indicated the 
presence of water in the depths of craters in lunar polar regions in 2008, this 
was also observed by NASA’s LCROSS mission of 2009. At the north and south 
poles of the Moon, the bottoms of craters may never see sunlight, and as such 
rest in permanent shadow. The temperatures here sit at 40°Kelvin (-233°C) and 
freeze-trap any volatiles that find their way there. 
 

 
Permanently shadowed regions in polar craters are 

suitable for the presence ice water. 

 
Water is of particular interest; it currently costs $25,000 to transport one gallon 
of water to cislunar space, around £5,000 per litre. Not just for astronaut life-
support, water can too be used to produce fuel for use in the latest rocket engine 
designs. As such, accessing and processing water on the moon could serve to 
greatly reduce the cost of space-travel, catapulting humanity toward becoming a 
truly space-faring civilization. 
 



  

In order to justify extended missions to access lunar water it is first necessary to 
truly understand how much water there is, the only way to do this is with in-situ 
measurements. Those who have met me might know of my interest for the 
deployment of multi-agent systems (robotic teams), robots endowed with the 
ability to learn individually, yet confined within strict bounds of safety and group 
performance. It might then be seen how my mind might race to imaginations of 
rover teams, working together on the lunar surface, exploring and prospecting to 
maximise knowledge returned.  
 
Though we would soon reach a blockage, we examined the traverse-planning 
problem, and attacked. We began development of illumination models to 
simulate expected solar power supply to rovers, direct-to-earth communication 
maps for the assurance of remote command, generation of slope maps for 
traversability checks, all within a framework that would automatically search for 
high-value traverses, given user-defined rover specifications. 
 
It was whilst conducting our first traverse searches that we noticed a problem. 
An assumption that had caught up with us demanded a complete change in focus. 
That assumption being that maps of the lunar surface would be complete. The 
Lunar Reconnaissance Orbiter (LRO) has indeed imaged the entire surface of the 
moon, both with 0.5m optical resolution and with 20m laser altimeter elevation 
maps. However, when long orbit images were pieced together, synthetic 
artefacts appeared. To us, these are long criss-crossing lines, to a rover, these are 
20ft walls and valleys, representing a huge problem for automated traverse 
planning. 
 

 
Striping Artefacts can be seen in the Lunar Orbiter Laser Altimeter 

Digital Elevation Model (LOLA DEM), 20 m resolution 

 
This exploded a shockwave through our group, 3 weeks in we had to change our 
objectives; luckily for us we had the right support, and the right team. With 
experience in geoinformatics, access to experts at NASA and incredible support 
from FDL management, as well as from Intel, we forced a quick pivot and came to 
tackle this mapping issue. An issue that, in all actuality, acts as an inhibiting block 
to any automated mission planning.  



  

Just as maps allowed Portuguese explorers to avoid Ottoman taxes by navigating 
around the Cape of Good Hope in the spice trade of the late 15th century, our 
maps could allow new explorers to bypass the pseudo-tax imposed by gravity, 
and access water directly from the moon. 
 
In order to remove the synthetic artefacts found in images, a conventional 
approach would be to co-register multiple image sources. Without GPS on the 
moon however, the exact geo-position of images is uncertain. As such, it is 
necessary to match features in high quality 0.5m resolution optical images, with 
those 20m resolution elevation models. Where images are made to overlap, we 
can choose to extract only the features that are present in both, effectively 
removing synthetic artefacts. 
 

 
Co-registering optical (dark) and altimeter (colour) images  

can help to remove synthetic mapping artefacts 

 
For our lunar images, the most common features are craters, and boy are they 
prevalent! We aimed to develop a deep learning approach to crater detection and 
extraction, for both the elevation and optical images. In order to train any deep 
learning system, plenty of examples are required. We gathered around 40,000 32 
by 32 pixel tiles and placed them into folders to signify those which clearly 
should represent a ‘crater’ and those which would represent ‘not a crater’, 
pruning those too ambiguous to be useful. That might sound like a lot of images 
to look through individually, indeed it was. However, our results depended on it 
and the network performed incredibly well as a result of this diligence.  
 



  

 
40,000 tiles were collected and labelled for the presence of craters. 

 
The resulting network presented offered an impressive 98.4% agreement with 
human triple-vetted labels, processing each set of 1000 image tiles in less than a 
minute, which would take each of us 1-3 hours. We didn’t yet manage to reach 
the stage of co-registering the images and removing those pesky artefacts, 
though we have now successfully paved the way, stirred the interest of several 
industrial partners and demonstrated the utility and applicability of modern 
systems to solving extra-terrestrial challenges.  
 
You can find the code we used, as well as all the data we generated in our Github 
repository. This will allow you to classify craters on the moon too! 
https://github.com/Arcanewinds/FDL-LunarResources 
 
There’s also a short video presentation available on Youtube. 
https://www.youtube.com/watch?v=zjGB-5DSM9M 
 
It was such a pleasure to have my childhood dreams endorsed within FDL’s 
summer program, to work in partnership with NASA, to tour their facility and 
rub shoulders with world-famous planetary scientists. As I started: nothing 
makes a data scientist happier than a new and juicy problem; To work on such a 
problem that facilitates lunar missions of the future, really is an incredible 
experience for anybody. 
 

https://github.com/Arcanewinds/FDL-LunarResources


  

 
Frontier Development Lab 2017 participants, mentors, partners and hosts 

 
Special thanks to the team, Dietmar Backes, Eleni Bohacek and Anthony 
Dobrovolskis, to the FDL management team and mentors, to Intel and Space 
Resource Luxembourg for their support, as well as in particular to Yarin Gal and 
Chedy Raissi for their assistance in making our project a success. To everyone 
who attended, it was a pleasure to work with you all and I look forward to seeing 
you again soon. 
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