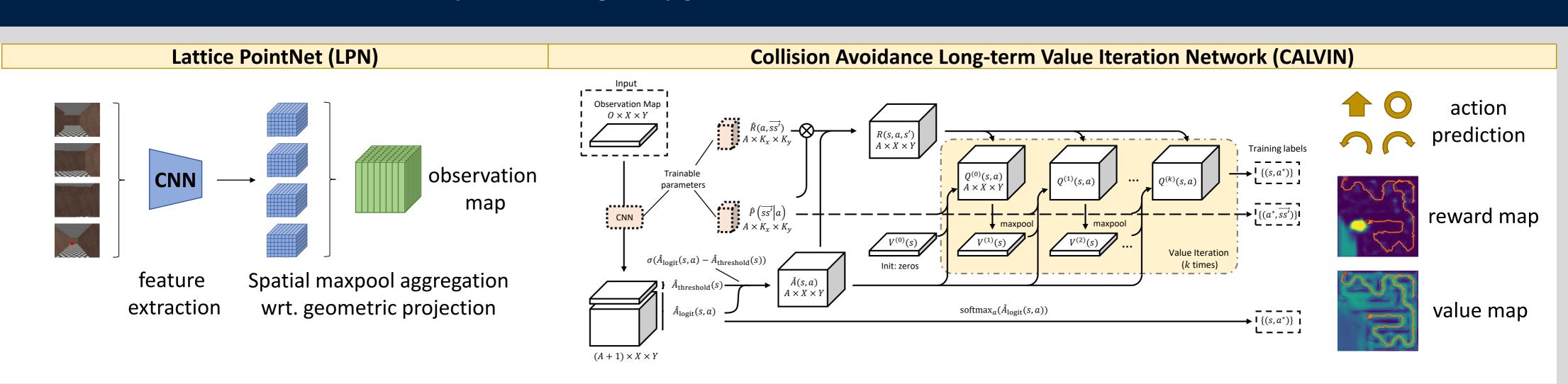
Towards real-world navigation with deep differentiable planners

Shu Ishida, João F. Henriques {ishida, joao}@robots.ox.ac.uk Visual Geometry Group, University of Oxford



Problem

Given expert demonstrations (trajectories of poses, RGB-D images and chosen actions), learn a navigation strategy that finds the target while avoiding obstacles in novel environments. The nature of obstacles and targets are learnt rather than given.

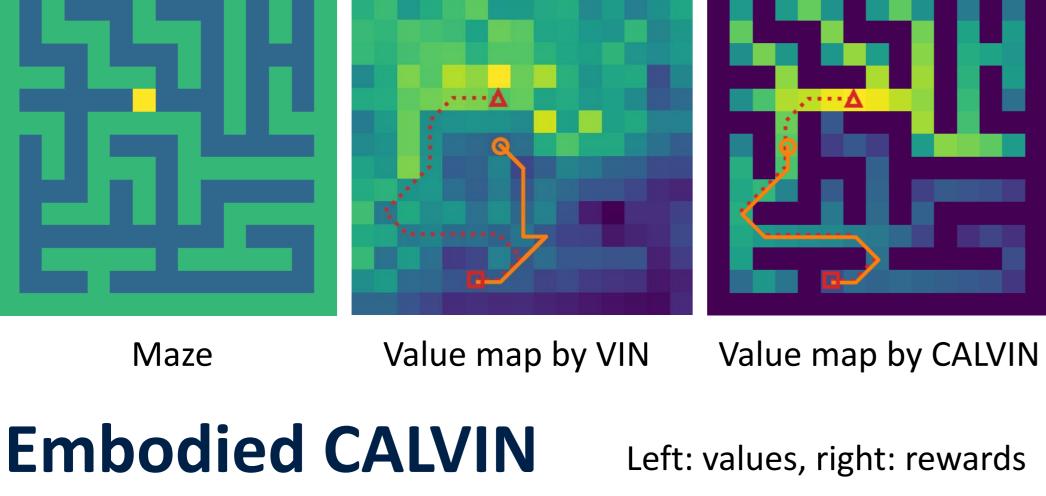
Method

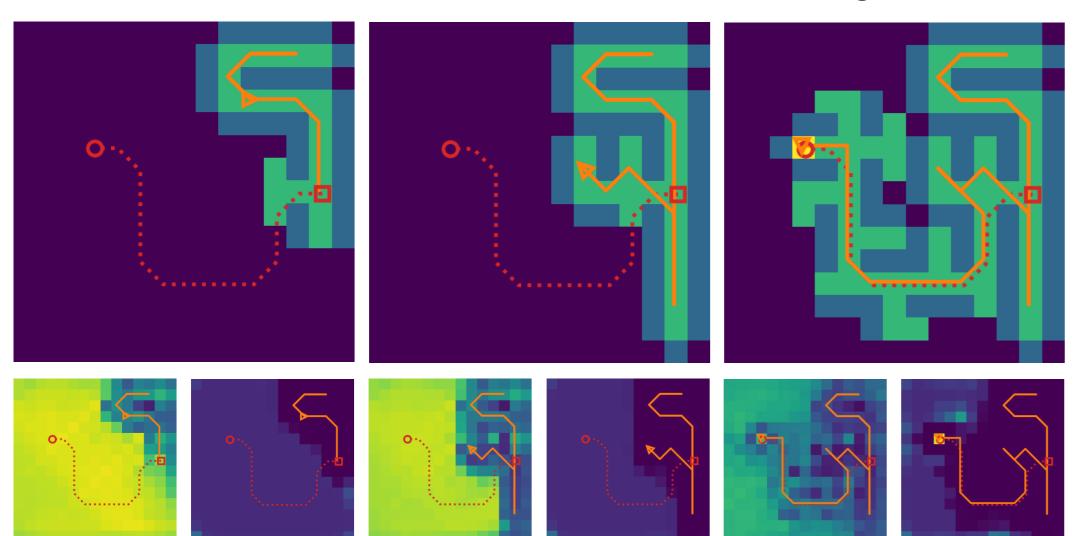
CALVIN improves upon $P(\overrightarrow{ss'}|a) = VIN^1$ in four ways:

- Decomposes transition model
- Penalises invalid transitions better
- Better sampling strategies
- Robust navigation in partially known environments

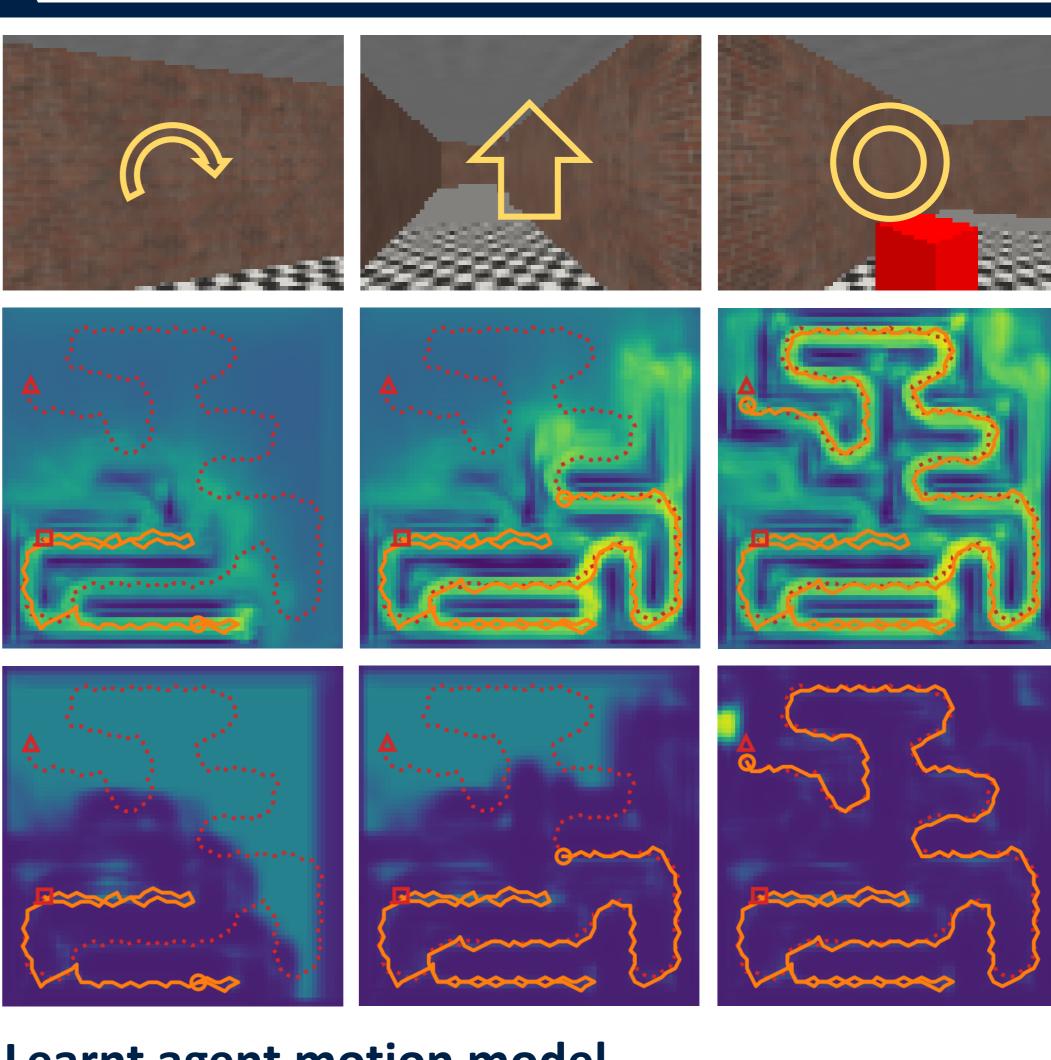
ernt rather than given. $\hat{P}\left(\overrightarrow{ss'}|a\right) \times \hat{A}(s,a,o)$ shared transition availability model (predicted from observation) actions

Grid Maze Environments

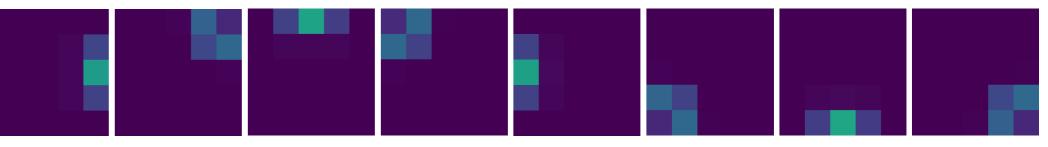




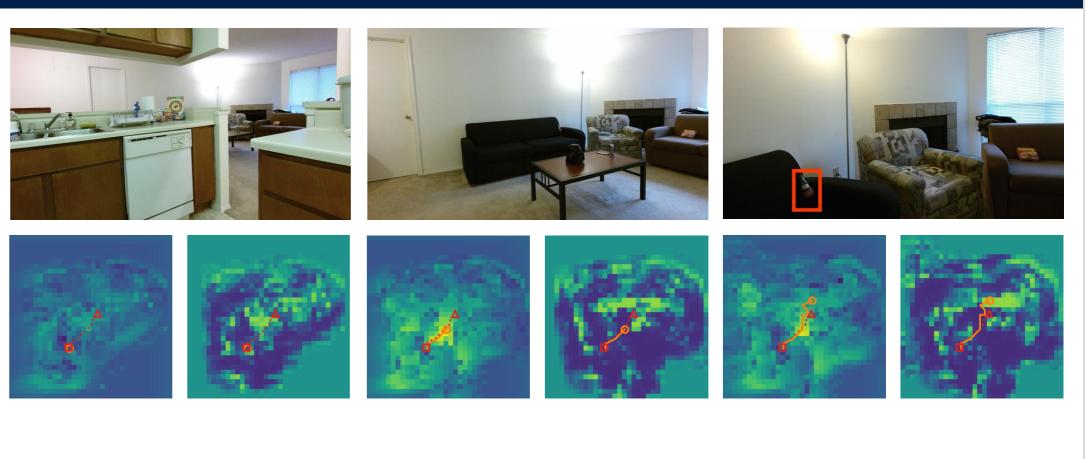
Miniworld² Environments



Learnt agent motion model



Active Vision Dataset³



- [1] Tamar et al., "Value Iteration Networks", NeurIPS 2016.
- [2] M. Chevalier-Boisvert, https://github.com/maximecb/gym-miniworld, 2018.
- [3] Ammirato et al. "A datasetfor developing and benchmarking active vision", ICRA 2017.