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Towards real-world navigation
with deep differentiable planne W e
Shu Ishida, Jodao F. Henriques {ishida, joao}@robots.ox.ac.uk Visual Geometry Group, University of Oxford

Lattice PointNet (LPN) Collision Avoidance Long-term Value Iteration Network (CALVIN)
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Given expert demonstrations (trajectories of poses,
RGB-D images and chosen actions), learn a
navigation strategy that finds the target while
avoiding obstacles in novel environments. The nature
of obstacles and targets are learnt rather than given.

CALVIN improves upon P(ssla)= P(ss’|la) x  A(s,a0)
shared transition availability model

VI N 1 in fOu I WayS: motion model (predicted from observation)

e Decomposes transition model
 Penalises invalid transitions better
 Better sampling strategies actions
 Robust navigation in
partially known environments

Learnt agent motion model

Active Vision Dataset?

Maze Value map by VIN Value map by CALVIN

EmbOdiEd CALVI N Left: values, right: rewards
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