How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19?
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SUMMARY

To what extent are effectiveness estimates of nonpharmaceutical in-
terventions (NPls) against COVID-19 affected by the assumptions that
our models make?

Approach. We perform a large scale empirical investigation, eval-
uating 2 SotA NPI effectiveness models and 6 variants that make
different assumptions.

Results. Considering only models that include transmission noise, we
find that policy relevant conclusions are remarkably robust.

DATA DRIVEN NPI| EFFECTIVENESS MODELS

Our models links the reported number of cases and deaths in country
conday t, C; . and D, . to the active NPlIs.
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However, to do this, we need to make assumptions! For example,
many models assume constant, mulitplicative NPI effects:
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However, for example, we could let the NPIs interact additively:
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a; > 0Veand a > 0.

PLAUSIBLE MODELS

We want to answer: to what extent do the assumptions that we
make affect our NPI effectiveness results?

Therefore, we extend 2 SoTA models and propose 6 variants that
make different assumptions: e Additive Effects; e Different Effects;
e Noisy-R; e Discrete Renewal; e Deaths-Only Discrete Renewal; e
Default (No Transmission Noise). We also evaluate the Default model
(from our previous work), and the model of Flaxman et al..

|MODEL COMPARISON \

How do we know which models to trust? We use holdout validation
and sensitivity to unobserved factors.
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Models that include noise on the measure of transmission have effec-
tiveness estimates that both generalise to unseen countries better and
are more robust to unobserved factors.

|ADDITIONAL TESTS .

All of our models require additional assumptions. We additionally test
sensitivity across 6 tests, categorised as follows.

Epidemiological Parameters. Our models require external
knowledge of COVID-19, such as the delays between infection and
case/death reporting. We vary these parameter values, as well as
priors placed over NPI effectiveness and R.

Data. We leave regions out one-at-a-time, and vary data pre-
processing parameters. Collecting NPI data is challenging, but if
results vary significantly to these tests, additional data should be
collected.

RESULT ROBUSTNESS

We find clear trends in NP| effectiveness estimates across variations

iIn model structure, data, and epidemiological parameters.
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EFFECTIVENESS IN CONTEXT

Most of our models assume that:

e [here are no NPI interactions.

e NPI effectiveness doesn’'t change across time.
e NP| effectiveness is fixed across countries.

How does this affect our results?

We consider a simplified versions of the Noisy-R model that observes
‘ground truth’ values of R, .. We show that the maximum likelihood
solution computes NPI effectiveness as a marginal average effective-
ness, where the average is taken over our data distribution.

Implications. For example, in our data, Stay-at-Home Orders
were only issued when many other NPIs were active. Therefore, it's
effectiveness estimate should be interpreted as ‘the average additional
benefit when a country implemented a Stay-at-home order, provided
other NPIs were active'.



