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Summary

We formulate continual learning as
variational inference over predictive
functions, and derive a tractable
variational objective for deep neural
networks. Our method achieves
state-of-the-art performance on
benchmark task sequences.

Inference scheme

A variational distribution q(6) over
the parameters of a neural network
induces a variational distribution g( f)
over predictive functions.

Based on this, we formulate training
on the current task ¢ as finding the
posterior ¢:(f) € Q that maximizes

eq(f) [10gp(}’t | / (Xt))] — Dkr (Qt(f)HQt—l(f))

where (X4, ¥¢) is the data for task ¢
and q:—1(f) is the variational
posterior at the end of task ¢ — 1.

The first term in the objective
encourages ¢:( f)to fit the data from
task ¢. The second term promotes
agreement between ¢;(f)and
q:—1(f), preventing catastrophic
forgetting on previous tasks.
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Schematic of training dynamics
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On task 1, the variational distribution over functions updates from qo(f) to q1(f)
to fit dataset D;. On task 2, the posterior go(f) fits dataset D5 while also matching
q1(f) on a small subset of D;. The distribution over parameters is free to change
significantly since changes in 8 are not directly penalized.
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Making inference tractable

In i1ts original form, the variational
objective Is intractable for neural
networks. To resolve this, we

1. Induce a variational distribution
over functions by defining a
mean-field Gaussian distribution
over neural-network parameters

2. Approximate the KL divergence
between distributions over
functions by linearizing neural
networks at parameter means

3. Derive a Monte Carlo estimator for
use in stochastic optimization

Practical demonstration on synthetic data
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A neural network is tasked with binary classification on data drawn from regions of
2D input space progressively revealed over time. As a result of using sequential
function-space variational inference, the neural network infers an accurate decision
boundary while maintaining high predictive uncertainty away from the data.

Performance on split CIFAR
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Our method (S-FSVI) outperforms
parameter-space variational inference
(VCL) and an existing function-space
method (FROMP) on split CIFAR, a
challenging task sequence.


mailto:tim.rudner@cs.ox.ac.uk
https://timrudner.com/cfsvi

	Summary
	Schematic of training dynamics
	Making inference tractable
	Inference scheme
	Performance on split CIFAR
	Practical demonstration on synthetic data

