
Online Learning for Faster Verification of Neural Nets
Speeding up integer programs with online convex optimisation

Lewis Smith (lsgs@robots.ox.ac.uk), M. Pawan Kumar (pawan@robots.ox.ac.uk)

Neural Network Safety

• Deep nets are our most empirically successful models in a lot of applications by a large

margin

• But not robust: adversarial examples are easy to find. Small changes to an input can

have a large effect on the model response

• Leads to interest in provable verification of such models

Verifying Neural Nets

• Neural net is a parameterised function; xn = f (x0)

• Consider properties that are linear inequalities on the outputs, for the input lying in

some domain C;

P := x ∈ C, xn = f (x0)⇒ cTxn − d ≥ 0

• Can prove or disprove this by solving an optimisation problem

min cTxn − d

s.t xn = f (x0)

x0 ∈ C

• If the value of this program is above zero, then the property holds. If not, we have found

a counter-example.

• Problem: this optimisation problem is non-convex, and the above is only true if we can

find the global optimum. In fact, turns out to be NP hard!

Branch and Bound

1: Input: Objective function f , domain C , tolerance ε
2: ub← compute_ub(C)
3: lb← compute_lb(C)
4: doms← {(lb, C)}
5: while ub− lb > ε do
6: (_,dom)← pick_out(doms)

7: [d1, d2...dn]← split(dom)

8: for i = [1..n] do
9: ub′← compute_ub(di)

10: lb′← compute_lb(di)
11: if ub′ < ub then
12: ub← ub′

13: doms← {(l, d) | (l, d) ∈ doms, l < ub}
14: end if

15: if lb′ < ub then
16: doms← (lb′, di) ∪ doms

17: end if

18: end for

19: lb← min{l | (l, d) ∈ doms}
20: end while

• General strategy for combinatorial problems.

• Basic idea; split our original domain into a series of sub-domains by introducing extra

constraints.

• Can easily compute upper bounds by choosing any feasible x0 and evaluating the objec-

tive

• Can compute lower bounds by solving a linear program, formed by relaxing the non-

linearities of the network.

• Use lower and upper bounds to try to rule out the possibility that a sub-domain contains

the global minimum

• In the worst case, still have to explore all the states, but if we have good approximations

and heuristics can often be sufficiently fast

Online Budgeting

• From previous work; use a cheaper, but looser lower bound, calculated by choosing a

feasible point in the dual (without optimisation) to decide which dimension to split the

input on

• Problem: Bottleneck of this procedure is that we still have to solve a very large number

of linear programs.

• But do we actually need to optimise the lower bound every time?

• Idea: predict whether we should compute the expensive, tighter lower bound for a

branch at every iteration.

• Basically, it’s worth computing the tighter bound if it pushes the lower bound for that

region above zero, and we can prune out that domain. Otherwise, the computation is

wasted, as we will continue splitting on the domain anyway.

• Try to learn this online, adapting the model for the specific problem we are trying to

solve.

• The problem is in the training data; we only know the ground truth if we choose to

evaluate the LP

• Solution; use a simple, linear decision sign(wT
t xt) and, defining a variable yt = 1 if the

true LP bound is above zero and yt = −1 otherwise, use the loss

ft(wt) =

{
max(−αwT

t xt, 0)) yt = 1

max(−αwT
t xt, βw

T
t xt) otherwise

• Acts like the hinge loss when yt is positive, and we are getting the ground truth anyway.

• When yt is negative, this cost is minimised when the decision function is exactly 0

on that example; penalises budgeting confidently, and but also punishes evaluation of

negative points.

• Key feature; in the region where wT
t xt < 0, the decision function does not depend on

the sign of yt. This allows applying it even though we don’t know yt in this situation.

Figure 1: The online algorithm in action on data where the ground truth yt values were computed by brute force. Red

corresponds to yt = 1. The size of points is proportional to how recently they were observed; more recent points are

larger. We see that the algorithm mostly maintains a reasonable decision boundary. The features are the (scaled) cheap

lower bound on the x axis and the area of the domain on the y. Both quantities are used in a log scale.

Results

STD (s) B1 (s) REL NWins B2 (s) REL NWins

ACAS ALL 59697 28173 47% 175/188 24267 41% 168/188

SAT 33370 6269 19% 36/37 1442 4% 36/37

UNSAT 26327 21904 83% 139/151 22825 87% 132/151

PCAMNIST ALL 1440 972 68% 12/16 1160 81% 12/16

SAT 14 6 43% 4/4 10 71% 4/4

UNSAT 1426 966 68% 8/12 1150 81% 8/12

Online Convex Optimisation

• Online convex optimisation; playing a repeated game against an adversary. Possible ac-

tions form a convex setW , cost functions are convex and belong to a bounded family

F .

• At each round t, choose an action ωt ∈ W , and observe a cost ft ∈ F .

• Sequence of cost functions is arbitrary, and can even be adversarial chosen; imagine we

are playing against a demon who knows our strategy and is able to choose a sequence

to make our lives as hard as possible.

• Aim to minimise the regret; the worst case difference between our choices, as deter-

mined by algorithmA, and the best fixed action chosen with hindsight;

regretT (A) = sup
{f1..T}∈F

[
T∑
t=1

ft(ωt)− min
ω∈W

T∑
t=1

ft(ω)

]

• An online algorithm is useful if it has sublinear regret: regretT (A) = o(T ), which
implies that our average regret converges to the best fixed strategy.


