Towards Inference Amortization for BUGS models: BUGS to Anglican compilation

Adam Goliński, Frank Wood
Department of Engineering Science
University of Oxford
{adamg,fwood}@robots.ox.ac.uk

Outline

- **Probabilistic Programming Languages** (PPL) are a special class of programming languages which allow users to specify probabilistic models and run inference on them, i.e. find $p(x|y)$
 - x are latents and y are observed variables
- **BUGS** is a popular probabilistic programming language allowing to describe graphical models
- **Inference amortization** is a technique that greatly reduces the computational cost of run-time inference by training a neural network approximating the posterior distribution $q(x|y; \phi) \sim p(x|y)$ ahead of the time of the system operation
 - ϕ are the learnt parameters of the neural network
- **Anglican** is a universal, research-oriented PPL which implements some of the cutting-edge inference techniques including inference amortization
- To enable BUGS models to use inference amortization we have created a compiler translating models from BUGS to Anglican

Next steps

- completing the translation of the entire feature set of the BUGS language
- application and further improvement of the inference amortization approach which takes advantage of the structure of the forward graphical model [3] to automate the design of the neural network and is perfectly suited for the class of models expressible in BUGS

Inference amortization

Figure 1. Forward graphical model [3]

\[
p(x, y)
\]

\[
\alpha \sim \text{Exponential}(1.0) \\
\beta \sim \text{Gamma}(0.1, 1.0) \\
\lambda_n \sim \text{Gamma}(\alpha, \beta) \\
y_n \sim \text{Poisson}(\lambda_n t_n)
\]

\[
\lambda_n \text{ rate of failure for pump } n \\
y_n \text{ number of failures for pump } n \\
t_n \text{ length of operation time for pump } n
\]

Figure 2. Inference amortization framework [2]

\[
p(x | y) \\
q(x | y; \phi)
\]

\[
SIS \text{ stands for Sequential Importance Sampling}
\]

Figure 3. Inverted graphical model [3]

\[
q(x | y; \phi)
\]

Figure 4. Inference network with MADE-like neural networks [3]

Figure 5. Masked Autoencoder for Distribution Estimation [1]

References

