Motivation

Software most complex component of critical systems

Overview of the Week

Monday
- Introduction
- Micro-architectures
 - CPUs, busses, memory, caches
- Assembler
 - x86 vs. MIPS, ARM

Tuesday
- Basics of C
 - language
 - bit-vector semantics
 - functions
 - pointers, structs, data structures
 - compilation units and modularisation
 - memory-mapped I/O, interrupts, threads
Wednesday

- C++
 - classes and objects
 - inheritance
 - exceptions and resources
 - templates
- IEEE floating point
 - representation of numbers and rounding
 - compiler support in C
 - common mistakes and problems
 - basic numerical recipes
- Tooling
 - git, subversion
 - unit testing, regression testing
 - coverage metrics and safety standards, MISRA-C

Thursday

- Labview
- Done by Alessandro Abate

Friday

- Unified Modeling Language (UML)
 - design spiral
 - behavioural diagrams
 - class diagrams

What?

Prerequisites
- Basic imperative programming
- Basics of computing hardware

Learning Outcomes
At the end of the course students will:
- Be able to undertake basic programming assignments
- Self-instruct further techniques and details, as needed

Reading

- The C++ Programming Language
 Bjarno Stroustrup
- Programming for Engineers: A Foundational Approach to Learning C and Matlab
 Aaron R. Bradley
Schedule

Lectures: MT week 6 Mo–Fr 10–12, LR7
Labs: MT week 6 Mo–Fr 14–16

Labs

- Run by Pascal Kesseli
- DPhil in CS
- He has emailed you with installation instructions

Assessment

- Assessment is by report
- Due Monday week 7
- Primarily cover what you have done, i.e., your labs, and the lab sheets
- You can skip the trivial stuff
- You can skip Thursday's stuff